Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(21): 9390-9398, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35587710

RESUMO

The shapeshifting behavior for synthetic matters was found at either the molecular or supramolecular level, but the connection between shapeshifting at the two hierarchical levels remains missing. In this study, an 8-arm star giant molecule, NPOSS, was synthesized to connect the molecular and supramolecular shapeshifting. Controlling the conditions of bulk self-assembly allowed us to bring NPOSS into three different Ostwald's stages of nucleation. The high conformational flexibility of NPOSS facilitates molecular shapeshifting and allows NPOSS to take the discotic, rod-like and star-like geometries in different Ostwald's stages. Simultaneous changes in the supramolecular scaffolds were observed as the discotic, rod-like and star-like NPOSS molecules self-assembled into the supramolecular scaffolds of 1D columns, 2D lamellae, and 3D networks, respectively. These changes in the hierarchical structures also affect the CO2 affinity of NPOSS. Therefore, the connection between the molecular/supramolecular shapeshifting and the structure-driven property changes of NPOSS were established by taking advantage of the high conformational freedom of the 8-arm star giant molecule and its diverse self-assembly pathways leading to the different Ostwald's stages.


Assuntos
Conformação Molecular
2.
Nanoscale Adv ; 3(1): 173-176, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36131877

RESUMO

Evolving synthetic molecules toward complex structures is a major goal in supramolecular chemistry. Increasing the number of clips in a unimolecular multi-clip (UMC), although vital to elevate the complexity of supramolecular architectures, often prevents the UMC from forming host-guest complexes in the bulk phase. To overcome this difficulty, adaptive chemistry was applied to develop a novel adaptive unimolecular quaternary clip (Q-clip). The Q-clip is intrinsically amorphous, but self-organizes with exclusively 4 eq. of allosteric activators (NDI) to form the Q-clip : NDI4 complexes and a supramolecular lamellar structure in the bulk. The adaptive assembly is fast and allows us to locate the adaptive assembly area of Q-clip : NDI4 complexes in the amorphous Q-clip film. Our results provide new insights into the design of adaptive UMCs for the evolution toward complex structures and supramolecular functional materials.

3.
ACS Appl Mater Interfaces ; 9(17): 14967-14973, 2017 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-28398714

RESUMO

Until now, only limited DPP oligomers delivered ambipolar semiconductor characteristics. To develop a facile strategy of preparing ambipolar mono-DPP oligomers, two dithienyl diketopyrrolopyrrole (DPPT) based-conjugated molecules, DPPT-RD and DPPT-DCV, which contain 3-ethylrhodanine (RD) and dicyano-2-vinyl (DCV) end substituents were synthesized. The influences of the -RD end substituents on the molecular properties, solid-state morphology, and OFET performances of the DPPT oligomer were investigated. The UV-vis absorption and CV results showed that the RD end substituents provide the DPPT oligomer suitable EHOMO and ELUMO for hole and electron injection from the Au source-drain electrodes. Moreover, the RD end substituents also improve the crystalline nature of the DPPT oligomer. That is, DPPT-RD can form crystal arrays with good lattice orientation, larger crystalline size, and without polymorphism. With those properties, DPPT-RD thus display ambipolar characteristic with µh and µe reaching 2.16 × 10-2 and 7.27 × 10-2 cm2 V-1 s-1, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...